

T-1G-SM-120KM 1.25Gbps SFP Optical Transceiver, 120km Reach

Features

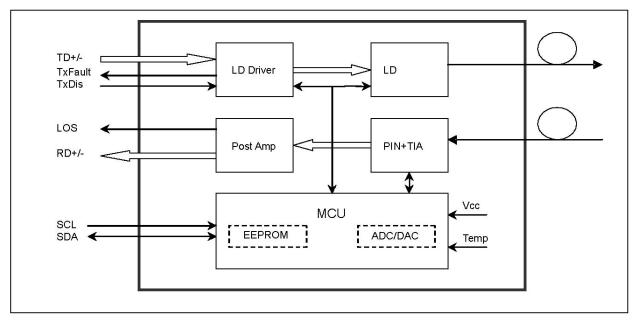
Dual data-rate of 1.25Gbps/1.063Gbps operation 1550nm DFB laser and APD photodetector for 120km transmission Compliant with SFP MSA and SFF-8472 with duplex LC Digital Diagnostic Monitoring: Internal Calibration or External Calibration Compatible with SONET OC-24-LR Compatible with RoHS +3.3V single power supply Operating case temperature range of 0°C to +70°C (Standard) or -40°C to +85°C (Industrial)

Applications

Gigabit Ethernet Fiber Channel Switch to Switch interface Switched backplane applications Router/Server interface Other optical transmission systems

Description

The SFP transceivers are high performance, cost effective modules supporting dual data-rate of 1.25Gbps/1.063Gbps and 120km transmission distance with SMF.


The transceiver consists of three sections: a DFB laser transmitter, a APD photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

T-TECH CO.,LIMITED 1/10

Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	0.5	4.5	V
Storage Temperature	Ts	40	+85	°C
Operating Humidity		5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit	
Operating Case Temperature		Standard	Тс	0		+70	°C
		Industrial	IC	-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V	
Power Supply C	Current		lcc			300	mA
Gigabit Ethernet					1.25		China
Data Rate	Fiber Chan	nel			1,063		Gbps

Optical and Electrical Characteristics

	Parameter	Symbol	Min	Typical	Max	Unit	Notes
		Transmitte	er				
Centre Wavelength		λc	1480	1550	1580	nm	
Spectral Width (-200	iB)	Δλ			1	nm	1
Side Mode Suppres	sion Ratio	SMSR	30			dB	
Average Output Pov	ver	Pout	0		5	dBm	1
Extinction Ratio		ER	9			dB	
Optical Rise/Fall Tin	ne (20%~80%)	t _r /t _r			0.26	ns	
Data Input Swing Di	fferential	Vin	400		1800	mV	2
Input Differential Im	pedance	Zin	90	100	110	Ω	
	Disable		2.0		Vcc	V	
TX Disable	Enable	j.	0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
	Normal		0		0.8	V	
		Receiver		<i>с</i> с			
Centre Wavelength		λc	1260		1610	nm	
Receiver Sensitivity					-25	dBm	3
Receiver Overload			-3			dBm	3
LOS De-Assert		LOS₀			-26	dBm	
LOS Assert		LOSA	-36			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swing Differential		Vout	370		1800	mV	4
100		High	2.0		Vcc	V	
LOS		Low			0.8	V	

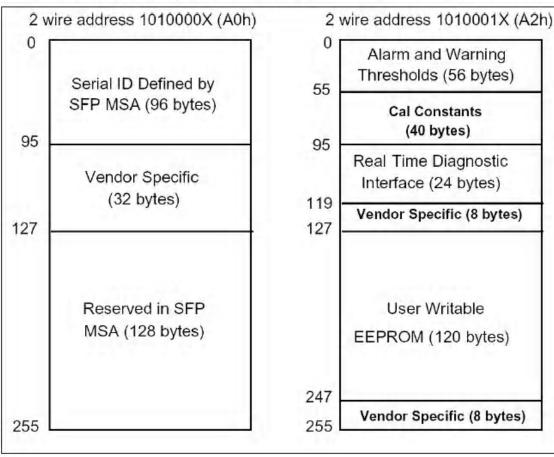
Notes:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 2^{7} -1 test pattern @1250Mbps, BERJ1×10⁻¹².
- 4. Internally AC-coupled.

Timing and Electrical

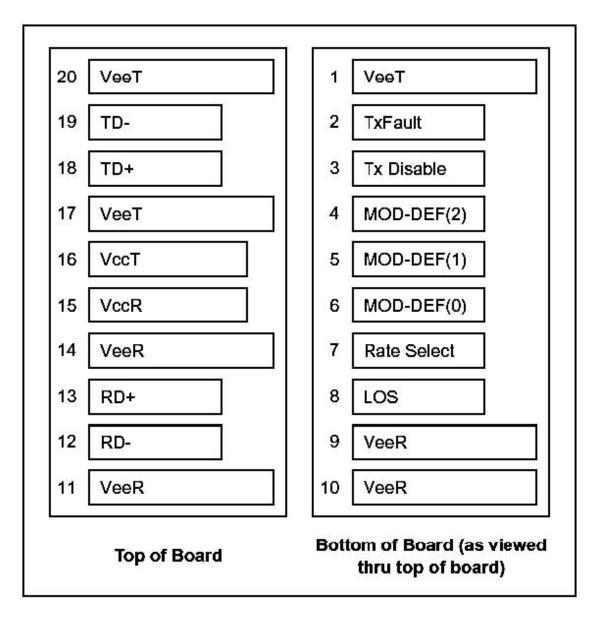
Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off	_		10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	nıs
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			µs
LOS Assert Time	t_loss_on			100	hs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	VH	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

Diagnostics Specification


Parameter	Range	Unit	Accuracy	Calibration	
+	0 to +70	°C	±3°C	Internal / Externa	
Temperature	-40 to +85	C.	±3°C		
Voltage	3.0 to 3.6	v	±3%	Internal / External	
Bias Current	0 to 100	mA	±10%	Internal / External	
TX Power	0 to 5	dBm	±3dB	Internal / External	
RX Power	-32 to -9	dBm	±3dB	Internal / External	

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2wire serial interface (SCL, SDA).


The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

SFP Transceiver Electrical Pad Layout

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTLLow	3	Note 3
7	Rate Select	Not Connect	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver ground	1	
10	VeeR	Receiver ground	1	
11	VeeR	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver ground	1	
15	VccR	Receiver Power Supply	2	
16	VccT	Transmitter Power Supply	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

1) TX Fault is an open collector output, which should be pulled up with a $4.7k \sim 10k \Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7k~10k α resistor. Its states are:

Low (0 to 0.8V): Transmitter on

(>0.8V, < 2.0V): Undefined

High (2.0 to 3.465V): Transmitter Disabled

Open: Transmitter Disabled

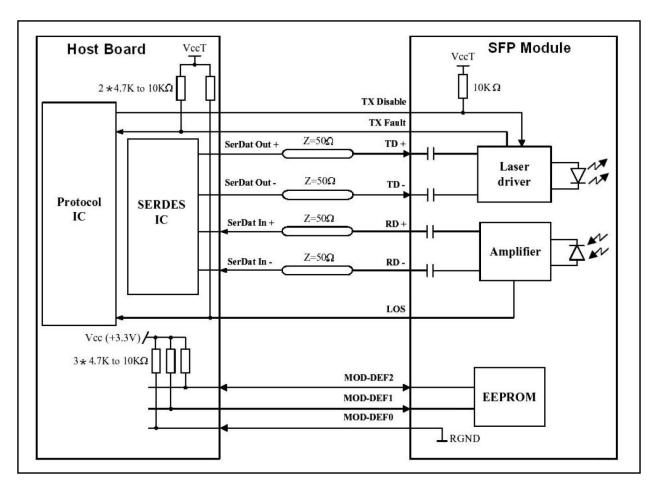
3) ModDef 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k \sim 10k \Omega$ resistor on the host board. The pullup voltage shall be VccT or VccR

ModDef 0 is grounded by the module to indicate that the module is present

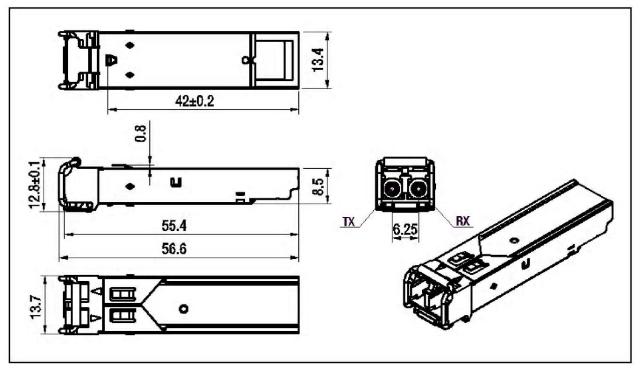
ModDef 1 is the clock line of two wire serial interface for serial ID

ModDef 2 is the data line of two wire serial interface for serial ID

4) LOS is an open collector output, which should be pulled up with a $4.7k \sim 10k \Omega$ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.


T-TECH CO.,LIMITED 7/10

5) RD/+: These are the differential receiver outputs. They are internally ACcoupled 100 differential lines which should be terminated with 100 (differential) at the user


6) TD/+: These are the differential transmitter inputs. They are internally ACcoupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit

Mechanical Dimensions

Regulatory Compliance

Feature	Standard	Performance		
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883E Method 3015,7	Class 1(>500 ∨) Isolation with the case		
Electromagnetic Interference (EMI)	FCC Part 15 Class B	Compatible with standards		
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN60950, EN (IEC) 60825-1,2	Compatible with Class I laser product. Compatible with TüV standards		
Component Recognition	UL and CUL	UL file E317337		
Green Products	2002/95/EC 2005/618/EC	RoHS6		

Ordering information

	Product Description
T-1G-SM-120KM	1550nm, 1.25Gbps, LC, 120km, 0°C~+70°C
T-1G-SMD-120KM	1550nm, 1.25Gbps, LC, 120km, 0°C~+70°C, With Digital Diagnostic Monitoring
T-1G-SMI-120KM	1550nm, 1.25Gbps, LC, 120km, 40°C~+85°C
T-1G-SMDI-120KM	1550nm, 1.25Gbps, LC, 120km, 40°C~+85°C, With Digital Diagnostic Monitoring

T-TECH CO.,LIMITED 9/10

References

Small Form Factor Pluggable (SFP) Transceiver MultiSource Agreement (MSA), September 2000. Telcordia GR253CORE and ITUT G.957 Specifications.

Notice

T-TECH reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. T-TECH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact

E-mail:sales@t-techvip.com http://www.t-techvip.com

> T-TECH CO.,LIMITED 10/10