

T-2.5G-GPON-OLT-20KM-B

OLT for ITU-T G.984.2 Class B+

2.488Gbps Downstream and 1.244Gbps Upstream

Features

SFP Package with SC receptacle

1.244Gbps, 1310nm BM APD Receiver

2.488Gbps, 1490nm Transmitter With Isolator

Fast Signal Detect feature reduces rangingoverhead

Simplified OLT Reset Timing

Compliant With ITU-T G.984.2

Squelched RX output

Up to 20km distance at 9/125µm G.652 SMF

Complies with RoHS directive (2002/95/EC)

Operating case temperature: Standard: 0 to +70°C

Applications

GPON 20km OLT Side

Access Networks

Fiber to the Home, Curb, Office(FTTx)

Ordering information

Model No. Product Description

Description

T-TECH high performance GPON OLT transceiver module is designed for Passive Optical Network application, 2.488Gbps downstream and 1.244Gbps upstream. It is fully compliant with ITU-T G.984.2.

The GPON OLT transceiver is packaged of small form factor pluggable with SC receptacle. The digital diagnostic monitoring function is compliant with SFP MSA.

The module consists of 1490nm DFB Laser, APD detector and WDM filter in a high-integrated optical sub-assembly. It transmits 2.488Gbps at 1490nm, and receives 1.244Gbps at 1310nm in burst mode.

Absolute Maximum Ratings

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	Tst	-40	+85	°C	+
Operating Case Temperature	Tc	0	70	°C	2
Operating Humidity	RH	5	90	%	Non-condensing
Supply Voltage	Vcc	0	4.0	V	

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Tc	0	-	+70	°C
Power Supply Voltage	Vcc	3.13	3.3	3.47	V
Power Supply Current	Icc	-#.		500	mA
Date Rate	Upstream/Downstream		1.244/2.488		Gbps

Electrical Characteristics

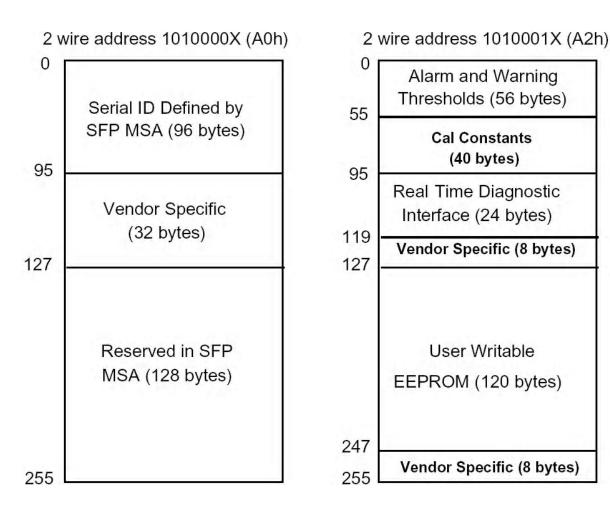
Paran	neter	Symbol	Min	Typical	Max	Unit	Notes
			Transmit	ter			
LVPECL C Inputs(Dif		Vin	200		1600	mVpp	AC coupled internally
Power Supp	ply Current	lcc_Tx			200	mA	
Input Impedance (Differential)		Zin	90	100	110	ohms	Rin > 100 kohms @ DC
Tx Dis	sable		2		Vcc	V	
Tx Er	nable		0		0.8	V	
Tx Faul	t_High		2.4		Vcc	V	
Tx Fault_Normal			0		0.4	V	
			Receive	er			
LVPECL (Differe		Vout	400		1600	mVpp	DC coupled outputs
Power Sup	ply Current	lcc_Rx			150	mA	
D.: 100	High		2		Vcc	٧	
Rx_LOS	Low		0		0.8	V	

Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Date Rate (Upstream/Downstream)			1.244/2.488		Gbps	
		Transmitte	er			
Centre Wavelength	λc	1480	1490	1500	nm	
Spectral Width (-20dB)	Δλ			1	nm	
Side Mode Suppression Ratio	SMSRR	30			dB	
Average Output Power	Pout	1.5		5	dBm	1
Downstream optical penalty				1	dB	
Extinction Ratio	ER	10			dB	2
Tolerance to Tx back reflection		-15			dB	
Rise/Fall Time(20%~80%)	tr/tf			160	ps	2,3
Output Optical Eye		ITU-T	G.984.2 Compliant			
Optical Output Power with TX OFF	P_off			-40	dBm	
		Receive				
Centre Wavelength	λc	1260	1310	1360	nm	
Receiver Sensitivity	Pmin			-28	dBm	4
Receiver Overload	Pmax	-8			dBm	4
Receiver Burst-Mode Dynamic Range		15	20		dB	5
Receiver Reflectance	CR			-20	dB	
Signal Detect Assert Level	SDA			-30	dBm	
Signal Detect De-Assert Level	SDD	-42			dBm	
Signal Detect Hysteresis		0.5	2	6	dB	6
Receiver CID Tolerance	CID	72			bits	
Damage Threshold for Receiver	Pin, damage	0			dBm	
Maximum Receiver Reflectance	Rx_r			-20	dB	

Notes:

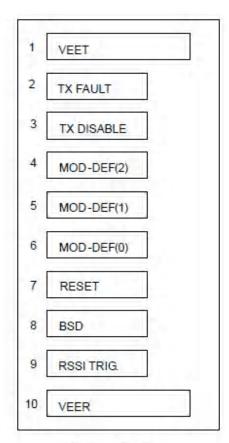
- 1: Measured with 9/125um G.652 SMF.
- 2: Filtered, Measured with PRBS223 -1 test pattern @2.488Gbps.
- 3: Measured with the Bessel-Thompson filter OFF.
- 4: Measured with a PRBS 223 -1 test pattern @1.244Gbps, BER 1X10-10.
- 5: The input power difference between two subsequent high and low burst data.
- 6: LOS Hysteresis(SD signal coincides with the LOS signal inversion)



Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.


The digital diagnostic memory map specific data field defines as following.

Pin Diagram

20	VEET
19	TD-
18	TD+
17	VEET
16	VCCT
15	VCCR
14	VEER
13	RD+
12	RD-
11	VEER

Top of Board

Bottom of Board

Pin Descriptions

Pin Signal Name		Description	Plug Seq.	Notes	
1	VEET	Transmitter Ground	1		
2	TX FAULT	Transmitter Fault Indication	3	Note 1	
3	TX DISABLE	Transmitter Disable	3	Note 2	
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3	
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3	
6	MOD_DEF(0)	TTL Low	3	Note 3	
7	RESET	LVTTL input. Assert "Reset" high at the end of previous burst,16 bits in	3	Note 4	
8	BSD	Burst signal detect	3	Note 5	
9	RSSI TRIG.	CMOS input. Assert high at the beginning of the monitored burst	3	Note 6	
10	VEER	Receiver ground	1		
11	VEER	Receiver ground 1			
12	RD-	Inv. Received Data Out	Inv. Received Data Out 3		
13	RD+	Received Data Out	3	Note 7	
14	V _{EER}	Receiver ground	1		
15	Voca	Receiver Power Supply	2		
16	Voct	Transmitter Power Supply	2		
17	V _{EET}	Transmitter Ground	1		
18	TD+	Transmit Data In	3	Note 8	
19	TD-	Inv. Transmit Data In	3	Note 8	
20	VEET	Transmitter Ground	1		

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10K\omega$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on

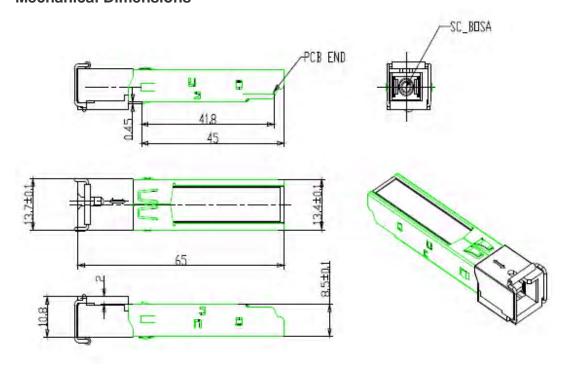
(>0.8V, < 2.0V): Undefined

High (2.0 to 3.465V): Transmitter Disabled

Open: Transmitter Disabled

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR. Mod-Def 0 is grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID
- 4) RESET is a LVTTL input. When the previous burst signal package is end, the host will give a "high" RESET to restore the state of LA. Internal pull-down 10K resistor to GND.
- 5) BSD can track the state of receiving burst signal. Logic 0 indicates loss of signal; Logic1 indicates receiving signal

packages.


- 6) RSSI TRIG is a CMOS input. Assert high after 30ns delay time of the beginning of the monitored burst package, at least 300ns in duration.
- 7) RD-/+: These are the differential receiver outputs. They are internally DC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 8) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit

Mechanical Dimensions

Notice:

T-TECH reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. T-TECH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact:

E-mail:sales@t-techvip.com http://www.t-techvip.com